EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.


/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

1 / G* =  = [          ] ω   / T] / c [    [x,t] ] [-1] = 


G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..


Um experimento para demonstrar difusão

A difusão não é fácil de se observar, porque outros fenômenos de transporte, especialmente a convecção, são mais eficientes em escalas de comprimento acima de milímetros. Difusão é mais importante em escalas microscópicas.

Difusão pode ser demonstrada com um tubo de vidro longo, papel, duas rolhas de cortiça, uma certa quantidade de algodão embebido em solução de amônia e alguns pedaços de papel de tornassol vermelho. Fixa-se o algodão numa das rolhas e diversos pedaços de papel harmoniosamente espaçados numa linha ou barbante preso na outra, por exemplo, com alfinetes. Arrolhando-se as duas extremidades do tubo de vidro com as rolhas e seus anexos, tomando-se o cuidado do fio com os papéis de tornassol se alongar pelo comprimento do tubo, e deitando o tubo na mesa (o que elimina a ação da gravidade), sem nenhuma agitação, pode-se observar que o papel de tornassol vermelho fica azulado.

Isto ocorre porque as moléculas de amônia viajam por difusão da extremidade com mais alta concentração no algodão para a extremidade de mais baixa concentração no restante do tubo de vidro. Isso não significa que as partículas não se movimentam em outras direções, mas há um fluxo líquido (em balanço) da região de concentração mais alta para a região de concentração mais baixa. Como a solução de amônia é alcalina, o papel tornassol vermelho torna-se azul. Pela alteração da concentração de amônia, a taxa de mudança da cor dos papéis de tornassol pode ser alterada. Note-se que a taxa de difusão em si não é aumentada, mesmo quando existe um gradiente de concentração mais acentuado, pois não é função da concentração. O que é realmente maior é o fluxo.

Difusão "coletiva" dependente da concentração

Difusão coletiva é a difusão de um grande número de partículas, mais frequentemente num solvente.

Ao contrário do movimento browniano, o qual é a difusão de uma única partícula, interseções entre partículas pode ter de ser considerada, a menos que as partículas formem uma mistura ideal com o seu solvente (condições de mistura ideal correspondem ao caso onde as interações entre o solvente e as partículas são idênticas às interações entre partículas e as interações entre as moléculas do solvente, neste caso, as partículas não interagem quando no interior do solvente).

No caso de uma mistura ideal, a equação de difusão da partícula mantém-se verdadeira e o coeficiente de difusão D, a velocidade de difusão na equação de difusão da partícula é independente da concentração da partícula. Em outros casos, resultando em interações entre partículas no solvente irão sofrer os seguintes efeitos:

  • O coeficiente de difusão D, na equação de difusão da partícula torna-se dependente da concentração. Para uma interação atrativa entre as partículas, o coeficiente de difusão tende a diminuir à medida que aumenta a concentração. Para uma interação repulsiva entre as partículas, o coeficiente de difusão tende a aumentar à medida que aumenta a concentração.
  • No caso de uma interação atrativa entre as partículas, as partículas apresentam uma tendência a se fundirem e formares clusters, se a sua concentração encontra-se acima de um certo limite. Isso é equivalente a uma reação química de precipitação (e se as partículas consideradas em difusão são moléculas químicas em solução, então é uma precipitação.

Difusão molecular de gases

Transporte de material em fluido estagnado ou através de linhas de fluxo de um fluido em fluxo laminar ocorre por difusão molecular. Duas compartimentos adjacentes, separados por partição contendo gases puros A e B podem ser previstos. Movimento aleatório de todas as moléculas de modo a que, após um período, moléculas são encontradas distante das suas posições originais. Se a partição é removida, algumas moléculas de A movem-se em direção à região ocupada por B, seu número depende do número de moléculas no ponto considerado. Simultaneamente, moléculas de B difundem-se para os regimes anteriormente ocupado por A puro.

Finalmente, a mistura completa ocorre. Antes deste ponto no tempo, uma variação gradual na concentração de A ocorre ao longo do eixo, designado x, o qual une os compartimentos originais. Esta variação, expressa matematicamente -dCA/dx, onde CA é a concentração de A. O sinal negativo surge porque a concentração de A diminui à medida que a distância x aumenta. Similarmente, a variação na concentração de gás B é -dCB/dx. A taxa de difusão de A, NA, depende do gradiente de concentração a a velocidade média com a qual as moléculas de A movem-se na direção x. Esta relação é expressa pela lei de Fick

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde D é a difusividade de A em B, proporcional à velocidade molecular média e, portanto, dependente da temperatura e de pressão dos gases. A taxa de difusão NA, é geralmente expressa como o número de moles em difusão através de da unidade de área na unidade de tempo. Tal como acontece com a equação básica de transferência de calor, indica que a taxa de força é diretamente proporcional à força motriz, que é o gradiente de concentração.

Esta equação básica é aplicada a diversas situações. Restringindo o debate exclusivamente para o estado de equilíbrio, em que nem dCA/dx ou dCB/dx altera-se com tempo, a contradifusão equimolecular é considerada primeiro.


Relações de dispersão para o vácuo

Fato curioso e de relevância na mecânica quântica é que, ao passo que o vácuo é um meio não dispersivo para ondas eletromagnéticas (as assim chamadas velocidades de fase são iguais à velocidade de grupo em um pulso eletromagnético — todos com velocidades iguais à "c", a velocidade da luz), o vácuo é um meio dispersivo para ondas de matéria (funções de onda), a velocidade de fase dependendo do momento segundo a relação [3]:

 

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

para partículas livres (ondas de matéria planas).

Repare que a velocidade (real) esperada para a partícula não é a velocidade de fase de uma onda plana de matéria (partícula livre), mas sim a velocidade de grupo das ondas que formam o pacote de ondas associado à partícula, a velocidade de grupo obedecendo relação bem mais similar à esperada classicamente:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

na qual,  é a constante reduzida de Planck, p é o módulo do momento e k o número de onda atrelados à partícula em questão





Energia de translação e gases ideais

Ver artigo principal: Gás ideal

A energia cinética (newtoniana ou clássica) de uma partícula de massa m e velocidade v é dada pela expressão:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde vxvy e vz são as componentes cartesianas da velocidade vH é o hamiltoniano, e portanto será utilizado como símbolo da energia dado que a mecânica de Hamilton desempenha um papel destacado na forma mais geral do teorema da equipartição.

Como a energia cinética é quadrática nos componentes da velocidade, por equipartição destas três componentes, cada uma contribui com ½kBT para a energia cinética média em equilíbrio térmico. Portanto, a energia cinética da partícula é (3/2)kBT, como no caso do exemplo dos gases nobres discutido previamente.

De forma mais geral, num gás ideal, a energia total consiste exclusivamente de energia cinética de translação: já que se assume que as partículas não possuem graus internos de liberdade e se movem de forma independente umas das outras. A equipartição portanto prediz que a energia total média de um gás ideal com N partículas é (3/2) N kBT.

Portanto, a capacidade térmica de um gás é (3/2) N kB e a capacidade térmica de um mol de partículas de dito gás é (3/2)NAkB=(3/2)R, onde NA é o número de Avogadro e R é a constante universal dos gases perfeitos. Como R ≈ 2 cal/(mol·K), a equipartição prediz que a capacidade térmica molar de um gás ideal é aproximadamente 3 cal/(mol·K). Esta predição foi confirmada experimentalmente.[3]

A energia cinética média também permite calcular a raiz da velocidade quadrática média vrms das partículas de gás, como:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde M = NAm é a massa de um mol de partículas de gás. Este resultado é muito útil para aplicações tais como a Lei de Graham de efusão, da qual se deriva um método para enriquecer Urânio.[4]

Energia rotacional e agitação molecular em solução

Ver artigo principal: Velocidade angular e Difusão rotacional

Um exemplo similar é o do caso de uma molécula que roda e cujos momentos de inercia principais são I1I2 e I3. A energia rotacional de dita molécula é dada por:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde ω1ω2, e ω3 são os componentes da velocidade angular. Seguindo um raciocínio similar ao utilizado no caso da translacção, a equipartição implica que, em equilíbrio térmico, a energia média de rotação de cada partícula é (3/2)kBT. De forma similar, o teorema da equipartição permite calcular a velocidade angular média (mais precisamente, a raiz média quadrática) das moléculas.[5]

A rotação das moléculas rígidas — ou seja, as rotações aleatórias de moléculas em solução — joga um papel de destaque nas relaxações observadas por meio de ressonância magnética nuclear, particularmente por ressonância magnética nuclear de proteínas e por acoplamento dipolar residual.[6] A difusão rotacional pode também ser observada mediante outras técnicas biofísicas tais como a anisotropia fluorescente, a birrefringência de fluxo e a espectroscopia dieléctrica.[7]

Energia potencial e osciladores harmónicos

A equipartição aplica-se tanto à energia potencial com à energia cinética. Exemplo importante disto são os osciladores harmónicos tais como as molas, que possuem una energia potencial quadrática:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde a constante a descreve a rigidez da mola e q é o desvio em relação ao equilíbrio. Se dito sistema unidimensional possui uma massa m, então a sua energia cinética Hkin é ½mv² = p²/2m, com v e p = mv a velocidade e o momento do oscilador, respectivamente. Combinando estes termos obtém-se a energia total[8]:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

Deste modo, a equipartição implica que, em equilíbrio térmico, o oscilador possui uma energia média:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde os colchetes angulares  representam a média da quantidade contida entre eles.[9]

Este resultado é válido para todo o tipo de osciladores harmónicos, como por exemplo num pêndulo, numa molécula que vibra ou num oscilador electrónico passivo. Existem numerosos sistemas que contêm este tipo de osciladores; mediante a equipartição, cada um destes osciladores recebe uma energia média total kBT e portanto contribui kB para a capacidade térmica do sistema. Esta última relação pode ser usada para obter a fórmula para o ruído de Johnson–Nyquist ou "ruído térmico"[10] e a Lei de Dulong-Petit para a capacidade térmica molar dos sólidos. Esta última aplicação foi especialmente relevante na história da equipartição.

Capacidade térmica dos sólidos

Figura 3. Os átomos numa rede cristalina podem vibrar em redor das suas posições de equilíbrio na rede. Estas vibrações, em grande medida representam a capacidade térmica dos dielétricos cristalinos; com os electrões metálicos também contribuindo para a capacidade térmica.

Uma aplicação importante do teorema da equipartição é o do cálculo da capacidade térmica de um sólido cristalino. Cada átomo neste tipo de sólido pode oscilar em três direcções independentes, pelo que se pode pensar o sólido como sendo um sistema de 3N osciladores harmónicos simples independentes, onde N é o número de átomos na rede. Dado que cada oscilador harmónico possui uma energia média kBT, a energia total média do sólido é 3NkBT, e a sua capacidade térmica é 3NkB.

Tomando o número de Avogadro NA, e utilizando a relação R = NAkB entre a constante dos gases R e a constante de Boltzmann kB, encontra-se uma explicação para a lei de Dulong-Petit relativa às capacidades térmicas molares dos sólidos, que estabelece que a capacidade térmica por mol de átomos na rede é 3R ≈ 6 cal/(mol·K).

No entanto, esta lei não reproduz os dados experimentais a baixas temperaturas, devido à presença de efeitos quânticos; também é inconsistente com a terceira lei da termodinâmica, de acordo com a qual a capacidade térmica molar de qualquer substância deve tender a zero quando a temperatura se aproxima do zero absoluto.[10] Uma teoria mais precisa, que incorpora efeitos quânticos, foi desenvolvida por Albert Einstein (1907) e Peter Debye (1911).[11]

É possível representar outros numerosos sistemas físicos como conjuntos de osciladores acoplados. Os movimentos destes osciladores pode-se decompor em modos normais, similares aos modos de vibração de uma corda de piano ou das ressonâncias de um tubo de órgão. Por outra lado, a equipartição muitas vezes não funciona em ditos sistemas, porque não existe intercâmbio de energia entre os modos normais. Num caso extremo, os modos são independentes e portanto as suas energias se conservam de forma independente. Isto mostra que algum tipo de mistura de energias, chamada ergodicidade, é importante para que seja válida a lei da equipartição.

Sedimentação de partículas

Ver artigo principal: Sedimentação e Equação de Mason-Weaver

A energia potencial nem sempre possui uma dependência quadrática em relação à posição. No entanto, o teorema da equipartição também demonstra que se um grau de liberdade x contribui somente em uma fracção xs (para um número real fixo s) para a energia, então a energia média em equilíbrio térmico dessa parte é kBT/s.

Esta extensão possui uma aplicação no estudo de sedimentação de partículas sob acção da força de gravidade.[12] Por exemplo, o enevoado que por vezes é observado na cerveja pode ser causada por aglutinações de proteínas que dispersam a luz.[13] Como decorrer do tempo, estas aglutinações deslocam-se para baixo por efeito da força da gravidade, produzindo um aumento do enevoamento próximo da zona inferior do recipiente comparado com a zona superior. No entanto, mediante um processo que opera em direcção contrária, as partículas também difundem em sentido ascendente, em direcção à parte superior do recipiente. Uma vez alcançado o equilíbrio, o teorema da equipartição pode ser utilizado para determinar a posição média de una aglutinação particular de massa flutuante mb. Para o caso de uma garrafa de cerveja de altura infinita, a energia potencial gravitacional é:

/

G* =  = [          ] ω   / T] / c [    [x,t] ]  = 

onde z é a altura da aglutinação de proteínas na garrafa e g é a aceleração da gravidade. Dado que s=1, a energia potencial média de um aglutinação de proteínas é kBT. Portanto, uma aglutinação de proteínas com uma massa flutuante de 10 MDa (aproximadamente do tamanho de um vírus) produziria um enevoamento com uma altura média de aproximadamente 2 cm, em equilíbrio. O processo de sedimentação até se estabelecer um equilíbrio é descrito pela equação de Mason-Weaver.[14]

Comentários

Postagens mais visitadas deste blog